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Abstract
Usually, in supersymmetric theories, it is assumed that the time evolution of
states is determined by the Hamiltonian, through the Schrödinger equation.
Here we explore the superevolution of states in superspace, in which the
supercharges are the principal operators. The superevolution equation is
consistent with the Schrödinger equation, but it avoids the usual degeneracy
between bosonic and fermionic states. We discuss superevolution in
supersymmetric quantum mechanics and in a simple supersymmetric field
theory.

PACS numbers: 11.30.Pb, 14.80.Ly

1. Introduction

Supersymmetry is a beautiful symmetry, extending the Poincaré symmetry of space–time.
The supersymmetry generators are spinorial in character, and they relate bosonic states with
integer spin to fermionic states of half-integer spin. Supersymmetry is present in a wide range
of theoretical settings—quantum field theory, supergravity and superstring theory. Yet there
is no evidence so far of the physical realization of supersymmetry. Even if supersymmetry
were established through the discovery of heavier partner particles of the elementary particles
we know, it would still not be exact supersymmetry but only an approximate, broken form.

A simpler version of supersymmetry occurs in supersymmetric quantum mechanics
(see [1] for a recent discussion of the various formulations). Here, the states that are related
by supersymmetry may or may not differ in spin. Some rather special systems with exact
or approximate supersymmetry, in this more limited sense, are physically realized. Certain
nuclei have a sequence of excited states labelled by increasing energy and angular momentum.
The energy levels of one nucleus with half-integer angular momenta have approximately
the same spacing as the combined energy levels of two close-by nuclei with integer angular
momenta. These states can be modelled using a supersymmetry algebra [2]. Another example
is an electron in a magnetic field, restricted to a two-dimensional plane [3, 4]. The magnetic
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field need not be uniform. Here, the states of the electron with spin up are paired by a
supersymmetry operator to states of the same energy with spin down. Only the zero-energy
states are unpaired. (In this, and some other quantum mechanical examples, the states related
by supersymmetry are not really distinguished by the dichotomy ‘bosonic/fermionic’, but it is
convenient to use this terminology, and we will do so in what follows.) In both these examples,
the states related by supersymmetry are physically distinct, but have the same energy.

Yet there are many physical systems where there is a hint of supersymmetry, without the
accompanying energy degeneracy of states. In particular, part of a supersymmetric system
can be something well known, and physically realized. A nice example is the supersymmetric
quantum mechanical Coulomb system. This has been explored in an arbitrary dimension by
Kirchberg et al [5], but let us just consider the version in ordinary three-dimensional space.
The superpotential which gives the Coulomb potential is quite simple, being 1

2αr , with r
the distance to the source and α a measure of its strength. In the formalism of Witten [6],
applied to this example, the wavefunctions are differential forms in R

3, and the Hamiltonian
commutes with the degree of the form. So the Hilbert space splits up into the subspaces of
0-forms, 1-forms, 2-forms and 3-forms. Acting on 0-forms, the Hamiltonian is −∇2 + α

r
+ α2

4 ,
which for α < 0 is essentially the Hamiltonian of the standard hydrogen atom, but with energy
levels shifted so that the ground-state energy is zero. It is tempting to say that this latter
Hamiltonian is supersymmetric because it is part of a larger, truly supersymmetric system.
The full system has further Hamiltonians, acting on 1-forms, 2-forms and 3-forms. These are
physically meaningful (for example, the Hamiltonian on 3-forms is the repulsive Coulomb
Hamiltonian), but they do not occur simultaneously with the standard Coulomb Hamiltonian
in the hydrogen atom. Another example of this type is the Planck oscillator. This is the
standard quantum harmonic oscillator but with its ground-state energy shifted to zero. The
quantized electromagnetic field can be regarded as an infinite set of such oscillators, labelled by
momentum and polarization. A photon is the first excited state of one of these oscillators. The
Planck oscillator also occurs naturally in a supersymmetric context, but is then accompanied
by a second, fermionic oscillator which has no physical role in the theory of electromagnetic
radiation.

Our goal, in this paper, is to find a convincing reinterpretation of supersymmetric systems,
which avoids the degeneracy between bosonic and fermionic states. Our hope is to obtain
a new understanding of physical systems previously regarded as, say, the bosonic part of a
supersymmetric system. We are particularly interested in quantum field theory examples,
where we want to retain the advantages of supersymmetry, but avoid the mass degeneracy
of bosonic and fermionic particles. However, before studying quantum field theory, we shall
explore some quantum mechanical models.

Let us recall the relationship between factorizable Hamiltonians [7–9] and the structure
of supersymmetric quantum mechanics in one space dimension [10–12]. Suppose the
Hamiltonian H0 of a quantum particle can be factorized as

H0 = A†A. (1.1)

Then, there is a related Hamiltonian, namely H1 = AA†. H0 and H1 are called partner
Hamiltonians. The standard example is where A = 1√

2

(
d

dx
+ W(x)

)
and A† = 1√

2

(− d
dx

+

W(x)
)
, so

2H0 = − d2

dx2
+ W(x)2 − dW(x)

dx
, 2H1 = − d2

dx2
+ W(x)2 +

dW(x)

dx
. (1.2)

H0 and H1 both have non-negative spectrum, and any positive eigenvalue of H0 is also a
positive eigenvalue of H1. This is because if A†Aψ = Eψ , then AA†Aψ = EAψ . So if ψ is
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an eigenfunction of H0 with eigenvalue E, then Aψ is an eigenfunction of H1 with eigenvalue
E. This argument breaks down if Aψ = 0, but in that case E = 0.

H0 could easily be a physical Hamiltonian for a particle in one dimension, and we learn
that there is a related physical Hamiltonian H1 with almost the same spectrum. However, the
system does not simultaneously have both Hamiltonians. The Planck oscillator example is
W(x) = x, where

2H0 = − d2

dx2
+ x2 − 1, 2H1 = − d2

dx2
+ x2 + 1. (1.3)

H0 has spectrum 0, 1, 2, . . . and H1 has spectrum 1, 2, . . . .

In the supersymmetric quantum mechanical analogue of partner Hamiltonians, the Hilbert
space is of the form H = Hb ⊕ Hf , and the wavefunction is a pair of ordinary functions

(
ψ0

ψ1

)
,

where ψ0 is interpreted as the bosonic part and ψ1 as the fermionic part. The Hamiltonian has
the diagonal form

H =
(

H0 0
0 H1

)
=

(
A†A 0

0 AA†

)
. (1.4)

There is a Hermitian supersymmetry operator

Q =
(

0 A†

A 0

)
(1.5)

and the grading (Witten) operator

K =
(

1 0
0 −1

)
. (1.6)

The complete supersymmetry algebra is

K2 = 1, {K,Q} = 0, Q2 = H, (1.7)

from which it follows that Q commutes with H. This system has the two Hamiltonians H0

and H1 acting on the different sectors, and it has degenerate fermionic and bosonic states
(with E �= 0), connected by the action of Q.

So far we have mentioned only Hamiltonians and their spectra, but quantum mechanics
is about the time evolution of states via the Schrödinger equation, so let us look at this. In
supersymmetric quantum mechanics, the usual Schrödinger equation is(

i ∂ψ0

∂t

i ∂ψ1

∂t

)
=

(
A†A 0

0 AA†

)(
ψ0

ψ1

)
, (1.8)

so ψ0 and ψ1 evolve according to their respective Hamiltonians. A key point is that ψ0 and
ψ1 at some initial time, say t = 0, are independent. This leads to the degeneracy between
fermionic and bosonic states. Q maps bosonic into fermionic states and vice versa, but plays
no direct role in the time evolution.

One could impose a superselection rule forbidding linear superpositions of fermionic and
bosonic states. Even so, the initial state could be either fermionic or bosonic, and there would
still be two independent states with the same energy.

An idea we have considered, but which is not our final proposal, is to restrict further, and
impose the condition that ψ1 = 0 at the initial time. ψ1 would then be zero for all time. In this
way, one would recover the Schrödinger equation for one of the partner Hamiltonians, and
there would be no degeneracy. The ordinary quantum mechanics with Hamiltonian H0 and
wavefunction ψ0 becomes, in this way, part of a larger supersymmetric structure. One could
simply pronounce that this restricted Schrödinger equation is supersymmetric. This idea does
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not properly exploit the supersymmetry, because there is no explicit role for the supercharge
Q.

However, there is another route which captures the supersymmetric spirit of the problem,
leading to a very similar outcome. This involves an evolution equation in a superextension of
physical time, and ψ1 is non-vanishing. We describe this next.

2. Superevolution in supersymmetric quantum mechanics

It has been known for a long time [13] that the Schrödinger equation of supersymmetric
quantum mechanics has a ‘square root’ in which the evolution is determined by the supercharge
Q. Let the operators be as before. The superevolution equation is(

i ∂ψ0

∂t

ψ1

)
=

(
0 A†

A 0

)(
ψ0

ψ1

)
, (2.1)

which can be written more compactly as(
i ∂
∂t

−A†

−A 1

)(
ψ0

ψ1

)
= 0. (2.2)

The equations for the components are

i
∂ψ0

∂t
= A†ψ1, (2.3)

ψ1 = Aψ0. (2.4)

Substituting (2.4) into (2.3) we see that ψ0 obeys its Schrödinger equation, i ∂ψ0

∂t
= A†Aψ0.

Taking the time derivative of (2.4) and substituting (2.3) we see that ψ1 obeys its Schrödinger
equation i ∂ψ1

∂t
= AA†ψ1. However, ψ0 and ψ1 are not independent. Indeed, the general

solution of the superevolution equation is obtained by taking an arbitrary solution of the
Schrödinger equation for ψ0, and then setting ψ1 = Aψ0. We may regard ψ1 as a shadow of
the physical state ψ0.

In some ways, postulating the superevolution equation is hardly different from the earlier
idea of just taking ψ0 evolving with its corresponding Hamiltonian. But it has a more
supersymmetric flavour and still achieves the desired result of avoiding the degeneracy of
fermionic and bosonic states. For each energy eigenstate of H0 there is just one solution of
(2.1), up to an overall normalization constant.

Apart from the lack of independence of ψ0 and ψ1, there is another significant difference
between the superevolution equation and the separate Schrödinger equations for ψ0 and ψ1.
This concerns the zero-energy states. First, suppose that H0 has an eigenfunction φ with zero
eigenvalue. Then, 0 = 〈φ|H0|φ〉 = 〈φ|A†A|φ〉 = 〈Aφ|Aφ〉, so Aφ = 0. Therefore, the
corresponding solution of (2.1) is ψ0 = φ,ψ1 = 0. Consistent with zero energy, there is
no time dependence. Second, suppose that H1 has an eigenfunction φ̃ with zero eigenvalue.
Then, A†φ̃ = 0. Equation (2.3) is solved by setting ψ1 = φ̃ and ψ0 to be any time-independent
function, but for (2.4) to be satisfied one requires that φ̃ = Aψ0. This cannot be solved, since
it implies 〈φ̃|φ̃〉 = 〈Aψ0|φ̃〉 = 〈ψ0|A†φ̃〉 = 0, and hence φ̃ = 0, a contradiction. We conclude
that zero-energy states of H0 have corresponding solutions of the superevolution equation, but
zero-energy states of H1 do not.

There is a supertime formulation of the superevolution equation. Let us extend the time
line to a supertime R

1|1 with coordinates (t, τ ). τ commutes with t but is odd, and τ 2 = 0.
The supertime evolution operator D is defined to be

D = ∂

∂τ
− τ i

∂

∂t
. (2.5)
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This acts on a wavefunction � which is a function of t, τ and x. � has the expansion

� = �0 + τ�1, (2.6)

where �0 ∈ Hb and �1 ∈ Hf depend only on t and x. Therefore,

D� =
(

∂

∂τ
− τ i

∂

∂t

)
(�0 + τ�1) = �1 − τ i

∂�0

∂t
. (2.7)

Let us now extend the earlier definition of Q, by linearity, to �, with Q acting on �0 and
�1 as Q previously acted on ψ0 and ψ1. Q and τ are assumed to anticommute. Therefore,

Q� = Q�0 − τQ�1 = A�0 − τA†�1, (2.8)

with A�0 ∈ Hf and A†�1 ∈ Hb. The superevolution equation is taken as

D� = Q�. (2.9)

Combining (2.7) and (2.8), we see that in components

i
∂�0

∂t
= A†�1, (2.10)

�1 = A�0. (2.11)
It is easy to verify, abstractly or by acting on �, that

D2 = −i
∂

∂t
, (2.12)

so D is the square root of (minus) the time evolution operator that occurs in the Schrödinger
equation. One can check directly by acting on � that DQ + QD = 0. The superevolution
equation is therefore a consistent square root of the Schrödinger equation, because it implies
that

−i
∂�

∂t
= D2� = DQ� = −QD� = −Q2� = −H�. (2.13)

We have made a notational distinction between ψ0, ψ1, which are ordinary functions of
x and t, and �0, �1, for the following reason. It is best to regard �0 as even and �1 as
odd. This can be made explicit by extending space, with coordinate x, to a superspace R

1|1

with coordinates (x, θ), where θ2 = 0 and θ and τ anticommute. Then, let �0 = ψ0 and
�1 = θψ1. The total wavefunction � becomes the even expression

� = ψ0 + τθψ1. (2.14)

The operator D is as before, but Q becomes

Q = θA +
∂

∂θ
A†. (2.15)

Note that both D� and Q� are odd. The superevolution equation (2.9) takes the form(
∂

∂τ
− τ i

∂

∂t

)
(ψ0 + τθψ1) =

(
θA +

∂

∂θ
A†

)
(ψ0 + τθψ1). (2.16)

This simplifies to

θψ1 − τ i
∂ψ0

∂t
= θAψ0 − τA†ψ1. (2.17)

Comparing coefficients of θ and τ , we recover the component equations

i
∂ψ0

∂t
= A†ψ1, (2.18)

ψ1 = Aψ0, (2.19)

as before.
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The superevolution equation (2.9) was considered by Friedan and Windey [13] in the
context of a spinning supersymmetric particle, whose supersymmetry charge Q is the Dirac
operator, and using it they gave a novel proof of the Atiyah–Singer index theorem. The initial
state at t = τ = 0 was taken to be a spatial delta function, with vanishing dependence on odd
spatial coordinates like θ . In contrast, we would allow the initial state ψ0 (t = 0) to be an
arbitrary, ordinary function of x. More importantly, our proposal is for the physical realization
of supersymmetric quantum mechanics, and not just a mathematical application.

Superevolution equations have also been considered by Rogers [14], who constructed a
path integral representation for the finite (Euclidean) supertime evolution operator e−Ht−Qτ .
The initial state at t = 0, τ = 0 (in the context of one-dimensional supersymmetric quantum
mechanics) was taken to be a general function of x and θ,� = φ0(x) + θφ1(x); however,
we would impose the restriction that � is even. The wavefunction at τ = 0 is then purely
bosonic, and the fermionic part only occurs multiplied by τ . This avoids the degeneracy
between bosonic and fermionic states. The physical wavefunction at a later time can be
identified with �(t, τ = 0).

In quantized supergravity, the fundamental role of the supercharges has also been stressed.
The standard constraint of quantum gravity, that the Hamiltonian annihilates physical states,
can be replaced by the constraint that the supercharges annihilate physical states [15–17].

Returning now to quantum mechanics, recall that not just the evolution of the wavefunction
is important. One must also consider observables and their expectation values. In
superevolution, we are regarding ψ0 as the physical wavefunction and ψ1 = Aψ0 as its
shadow. We propose that an observable should be a Hermitian operator acting on ψ0. Let us
define a normalized wavefunction to be one satisfying 〈ψ0|ψ0〉 = 1. For such a wavefunction,
the expectation value of an observable O is 〈ψ0|O|ψ0〉.

If ψ0 is normalized, then the shadow wavefunction satisfies the normalization 〈ψ1|ψ1〉 =
〈Aψ0|Aψ0〉 = 〈ψ0|H0|ψ0〉 = E, where E is the energy expectation value. There are also
shadow observables Õ acting on ψ1, but these can be related to standard observables. The
observable O related to Õ is given by

〈ψ0|O|ψ0〉 = 〈ψ1|Õ|ψ1〉, (2.20)

so O = A†ÕA. The expectation value of Õ is defined as

〈ψ1|Õ|ψ1〉
〈ψ1|ψ1〉 = 1

E
〈ψ0|O|ψ0〉. (2.21)

For example, if Õ = 1, then O = H0 and the expectation value of Õ is 1. If Õ = H1 = AA†,
then O = (H0)

2 and the expectation value is E. The shadow observables do not make sense
in a state with E = 0, because ψ1 then vanishes.

3. Supersymmetry and differential forms

Witten [6] has formulated a large class of supersymmetric quantum mechanical models in
which the wavefunction is a differential form on some finite-dimensional Riemannian manifold
M. Many examples of supersymmetric quantum mechanics, including those discussed in
sections 1 and 2, are special cases.

The basic model just involves the geometry of M. Let M have dimension n and let
�ev(�odd) denote the space of forms of even (odd) degree. The complete Hilbert space is
H = Hb ⊕Hf where Hb = �ev and Hf = �odd. A wavefunction is therefore a pair � = (

ωev

ωodd

)
,

where ωev ∈ �ev is regarded as bosonic and ωodd ∈ �odd as fermionic.
The supersymmetry operator Q is constructed from the de Rham exterior derivative d and

its adjoint δ. (δ = ∗d∗ acting on �ev when n is odd and δ = −∗ d∗ otherwise. ∗ is the Hodge
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duality operator, whose definition requires a Riemannian metric.) d increases the degree of a
form by 1 and δ decreases the degree by 1, so both operators map even forms to odd forms
and vice versa. d and δ have the properties d2 = 0 and δ2 = 0, so (d + δ)2 = dδ + δd, the
Laplace–Beltrami operator acting on forms on M. The supersymmetry operators are

Q = 1√
2

(
0 d + δ

d + δ 0

)
, (3.1)

H = 1

2

(
dδ + δd 0

0 dδ + δd

)
, (3.2)

with K as before. These satisfy the algebra (1.7). Note that, formally, Q and H act in the same
way on �ev and �odd, but this is rather an illusion, since the detailed formulae depend on the
degree.

A key observation of Witten is that the operators above can be modified to include a
real-valued, superpotential function h defined on M. One simply replaces d by dh = e−hdeh

and δ by δh = ehδe−h in Q and H. (Note that this is not a trivial conjugation, as it would be if
δh were e−hδeh.) The algebra (1.7) is still satisfied.

The usual Schrödinger evolution of states, governed by the Hamiltonian H, can be replaced
by a superevolution, with component equations

i
∂

∂t
ωev = 1√

2
(dh + δh)ω

odd, (3.3)

ωodd = 1√
2
(dh + δh)ω

ev. (3.4)

This again avoids the degeneracy between bosonic and fermionic states connected by Q,
that occurs with the Schrödinger evolution. A special case reproduces the one-dimensional
supersymmetric quantum mechanical model of section 2. Choose M = R and set
W(x) = dh(x)

dx
. The wavefunction is the pair

� =
(

ψ0

ψ1dx

)
, (3.5)

where ψ0 and ψ1 are ordinary functions of x and t. The abstract θ of section 2 is here replaced
by dx. Then, (3.3) and (3.4) reduce to

i
∂

∂t
ψ0 = 1√

2
(dh + δh)ψ1 dx

= − 1√
2
(eh ∗ d ∗ (e−hψ1 dx))

= 1√
2

(
−∂ψ1

∂x
+

dh

dx
ψ1

)
= A†ψ1 (3.6)

and

ψ1 dx = 1√
2
(dh + δh)ψ0

= 1√
2

e−hd(ehψ0)

= 1√
2

(
∂ψ0

∂x
+

dh

dx
ψ0

)
dx

= (Aψ0) dx, (3.7)

which reproduce equations (2.3) and (2.4).
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The supertime version of the superevolution equations (3.3) and (3.4) can be expressed
entirely in terms of differential forms, and standard operations on forms. Recall that the
fermionic wavefunction ωodd is odd as it stands. We identify τ with the 1-form dt , and
then extend Witten’s formalism by making the wavefunction into a differential form on
M̃ = M × (−∞,∞), where the second factor is the time axis. The wavefunction is now
taken to be

�̃ = ωev + dt ∧ ωodd, (3.8)

an even form on M̃ . The operator D = ∂
∂τ

− τ i ∂
∂t

becomes

D̃ = ι ∂
∂t

− dt i
∂

∂t
, (3.9)

where ι ∂
∂t

is the inner product operator that cancels a dt factor immediately to the right (and
gives zero acting on a form with no dt in it), and dt acts by left exterior multiplication. Q is
replaced by the essentially identical Q̃ = 1√

2
(dh + δh), which is defined to act just on the M

variables, and which anticommutes with dt . In this extended formalism, the superevolution
equation becomes

D̃�̃ = Q̃�̃. (3.10)

This reduces to the component equations (3.3) and (3.4).
Note that the Witten model is not relativistic. Even if M = R

n and there is no
superpotential, the superevolution equation is not Lorentz invariant in R

n+1.

4. Superevolution in field theory

In this section we consider the simplest supersymmetric quantum field theory in 1+1
dimensions, the theory of one real scalar field and one Majorana fermion field [18], and
present its superevolution equations. But first, we present the conventional interpretation of
the field theory and its Schrödinger equations.

It is standard to write down the Lagrangian first, and then canonically quantize. However,
the Majorana condition implies that the Majorana field is conjugate to itself, and this leads
to some ambiguities in factors of 2. This difficulty can be resolved using a Dirac constraint
formalism but we will not go through this. Instead, we shall simply state the canonical
commutation and anticommutation relations for the field operators, and give the algebra of
supersymmetry operators.

Let x (or y) denote the spatial coordinate. The scalar field φ(x) and its conjugate
momentum π(x) are independent Hermitian operators at each point. In the Schrödinger
representation, they have no time dependence.

The Dirac matrices obey (γ 0)2 = 1, (γ 1)2 = −1 and γ 0γ 1 + γ 1γ 0 = 0. We shall use the
Majorana representation for these:

γ 0 =
(

0 i
−i 0

)
, γ 1 =

(
0 i
i 0

)
. (4.1)

The Majorana spinor field ψ(x) = (
ψ1(x)

ψ2(x)

)
has two components, both of which are Hermitian

operators.
The non-vanishing canonical commutation and anticommutation relations are

[φ(x), π(y)] = iδ(x − y), (4.2)

{ψα(x), ψβ(y)} = δαβδ(x − y), (4.3)

with all commutators [φ, φ], [π, π ] and [φ,ψα], [π,ψα] vanishing.
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The Hamiltonian is

H = 1

2

∫ (
π2 + (∂xφ)2 + W(φ)2 + iψ1∂xψ1 − iψ2∂xψ2 + 2i

dW(φ)

dφ
ψ1ψ2

)
dx, (4.4)

where W(φ) is an arbitrary function of φ, usually assumed to be a polynomial. The total
momentum operator is1

P = 1

2

∫
(2π∂xφ + iψ1∂xψ1 + iψ2∂xψ2) dx. (4.5)

It is best to combine these into the combinations

H + P = 1

2

∫ (
(π + ∂xφ)2 + W(φ)2 + 2iψ1∂xψ1 + 2i

dW(φ)

dφ
ψ1ψ2

)
dx, (4.6)

H − P = 1

2

∫ (
(π − ∂xφ)2 + W(φ)2 − 2iψ2∂xψ2 + 2i

dW(φ)

dφ
ψ1ψ2

)
dx. (4.7)

The two supercharges are

Q1 =
∫

((π + ∂xφ)ψ1 − W(φ)ψ2) dx, (4.8)

Q2 =
∫

((π − ∂xφ)ψ2 + W(φ)ψ1) dx. (4.9)

The theory simplifies to a free theory if W(φ) = mφ. The particles associated with the
quantized scalar and Majorana field then both have mass m.

After a somewhat long calculation, using the canonical (anti)commutation relations, one
can verify that the above operators obey the supersymmetry algebra

Q2
1 = H + P , (4.10)

Q2
2 = H − P , (4.11)

Q1Q2 + Q2Q1 = 0. (4.12)

These imply that Q1 and Q2 commute with both H and P. Formally, a boundary contribution
appears as a central charge on the right-hand side of (4.12) but it vanishes if we suppose that
φ has equal vacuum expectation values as x → ±∞.

As an example of part of the calculation of Q2
1, consider the square of the term involving

πψ1. Symmetrizing in the spatial variables of integration x and y, this becomes

1

2

∫∫
(π(x)ψ1(x)π(y)ψ1(y) + π(y)ψ1(y)π(x)ψ1(x)) dx dy, (4.13)

and since π commutes with itself and with ψ1 this simplifies to

1

2

∫∫
π(x)π(y)(ψ1(x)ψ1(y) + ψ1(y)ψ1(x)) dx dy

= 1

2

∫
π(x)π(y)δ(x − y) dx dy

= 1

2

∫
(π(x))2 dx. (4.14)

In the Schrödinger picture, states evolve in time according to the Hamiltonian. Let �

denote the complete quantum state and T the time. � obeys the Schrödinger equation

i
∂�

∂T
= H�. (4.15)

1 Our signs are such that H and P are the time and space components of the covariant 2-vector Pµ.
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If � is an eigenstate of H with total energy E, then

�(T ) = �(0) e−iET . (4.16)

One normally regards �(0) as a superposition of states completely specified by the numbers
and momenta of the various particles in the theory. For example, in the free theory, for one
scalar particle of mass m and momentum p, the energy is Ep =

√
p2 + m2, and one would

write �(0) = |p〉 and �(T ) = |p〉 e−iEpT .
However, for our purposes this is inadequate, because it does not give a satisfactory

representation of the total momentum and spatial displacement operators. We need to regard
states as functions of time T and of the spatial centre of mass coordinate X. A general state
is written as �(T ,X). X is well defined for field configurations that are localized in space
and approach the classical vacuum at infinity, but for the plane-wave field configurations that
occur in free field theory, a conventional choice must be made (see below).

We can now impose more symmetrical time and space evolution equations on the state
�, namely

i
∂�

∂T
= H�, (4.17)

i
∂�

∂X
= P�. (4.18)

If, as usual, � is an eigenstate of both H and P, with the eigenvalues E and P ′ being the total
energy and momentum, then

�(T ,X) = �(0, 0) e−i(ET +P ′X). (4.19)

The state �(0, 0) is a linear combination of multi-particle states |p1, p2, . . . , pn〉, where for
each momentum pi we need to specify the particle type too.

Such a phase dependence on the location of the centre of mass is standard in the quantum
mechanics of one or more particles [19], but in field theory it is generally neglected. It is
implicit in field theory, as one always regards e−iPa as the operator that spatially displaces a
state by a. With our notation we have, explicitly, e−iPa�(T ,X) = �(T ,X + a).2

We can regard the pair of equations (4.17) and (4.18) as the Schrödinger equations of
quantum field theory in 1+1 dimensions. In our supersymmetric field theory, the Hilbert space
of states decomposes as H = Hb ⊕ Hf , where states in Hb have even fermion number and
states in Hf have odd fermion number. � can be a general element of H, but normally one
imposes the superselection rule that � is either in Hb or in Hf . The action of Q1 and Q2 maps
states in Hb to physically distinct states in Hf and vice versa, degenerate in both energy and
momentum.

This completes our summary of the standard interpretation of the field theory.
Now we show that, because of the supersymmetry, the Schrödinger equations of the field

theory can be replaced by superevolution equations. To do this, we extend (1+1)-dimensional
space–time to a superspace R

2|2 with coordinates T ,X, θ1, θ2, where θ1 and θ2 are odd. We
introduce a state in superspace �(T ,X, θ1, θ2) and consider its expansion in θ1 and θ2,

�(T ,X, θ1, θ2) = �0(T ,X) + θ1�1(T ,X) + θ2�2(T ,X) + θ1θ2�12(T ,X). (4.20)

By analogy with what we did in supersymmetric quantum mechanics, we require that �0 and
�12 lie in Hb, and �1 and �2 lie in Hf . We also treat �1 and �2 as odd, anticommuting with
θ1 and θ2.

2 Another way in which the dependence is implicit in field theory is that the relationship between the particle creation
operator a

†
p and the field operators φ(x) and π(x) involves eipx , and this changes phase if one displaces the spatial

origin. So a one-particle state of momentum p changes under a displacement.
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Our assumptions mean that the expansion of � is analogous to that of a superfield in R
2|2

whose components are classical bosonic and fermionic fields; however, here the components
of � are multi-particle quantum states.

The superspace evolution operators are

D1 = ∂

∂θ1
− θ1i∂+ (4.21)

and

D2 = ∂

∂θ2
− θ2i∂−, (4.22)

where ∂± = ∂T ± ∂X. They obey the relations

D2
1 = −i∂+, (4.23)

D2
2 = −i∂−, (4.24)

D1D2 + D2D1 = 0. (4.25)

Because of the close formal similarity of this algebra with the supersymmetry algebra (4.10)–
(4.12), we can impose the consistent pair of superevolution equations

D1� = Q1�, (4.26)

D2� = Q2�. (4.27)

By acting with D1 and D2 on each of these equations and noting that D1 and D2 anticommute
with Q1 and Q2, we verify that these superevolution equations imply the Schrödinger equations
(equivalent to (4.17) and (4.18))

i∂+� = (H + P)�, (4.28)

i∂−� = (H − P)�. (4.29)

It is worthwhile to expand both equations (4.26) and (4.27) in their components, to check
their consistency. The first equation gives

�1 = Q1�0, (4.30)
i∂+�0 = Q1�1, (4.31)
�12 = −Q1�2, (4.32)
i∂+�2 = −Q1�12. (4.33)

Since Q2
1 = H +P , we can verify that each component state �0, �1, �2 and �12 obeys (4.28).

Similarly, the second superevolution equation gives

�2 = Q2�0, (4.34)
i∂−�0 = Q2�2, (4.35)
�12 = Q2�1, (4.36)
i∂−�1 = Q2�12, (4.37)

which implies that each component obeys (4.29). From both sets of equations together, we
see that the components are related algebraically to �0 by

(�0, �1, �2, �12) = (�0,Q1�0,Q2�0,−Q1Q2�0). (4.38)

Provided �1, �2 and �12 are related to �0 in this way, and �0 obeys the pair of Schrödinger
equations (4.28) and (4.29), it follows that all the component equations above are satisfied.

So, as in supersymmetric quantum mechanics, the only independent state is �0, which is
in the bosonic part of the Hilbert space, Hb. �1, �2 and �12 are shadow states that accompany
�0 in the superevolution, but they carry no independent physical information. There is no
physically independent fermionic state obtained by the action of Q1 or Q2 on a bosonic state.

We shall explore below, in a little more detail, the superevolution of particle states in free
field theory.
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5. Free field theory

The free theory of one scalar and one Majorana field, both of mass m, is diagonalized by
passing to momentum space. One can directly see the particle content and can clarify the
physics of the superevolution equations.

The scalar field operators π(x) and φ(x) have the coupled momentum space expansions

π(x) =
∫

dp

2π
(−i)

√
Ep

2

(
cp e−ipx − c†p eipx

)
, (5.1)

φ(x) =
∫

dp

2π

1√
2Ep

(
cp e−ipx + c†p eipx

)
, (5.2)

where Ep =
√

p2 + m2.3 The canonical commutation relations require[
cp, c

†
p′

] = 2πδ(p − p′), (5.3)

[cp, cp′ ] = [
c†p, c

†
p′

] = 0. (5.4)

For the Majorana field ψα(x) we first need to present the solutions of the classical Dirac
equation

(iγ µ∂µ − m)ψ = 0. (5.5)

In the Majorana representation, this becomes

∂+ψ2 = −mψ1, (5.6)

∂−ψ1 = mψ2. (5.7)

Plane-wave solutions of positive frequency (energy) are of the form

ψ(t, x) = u(p) e−i(Ept+px), (5.8)

where

u(p) =
( √

Ep + p

−i
√

Ep − p

)
. (5.9)

Similarly, there are negative-frequency plane-wave solutions

ψ(t, x) = v(p) ei(Ept+px), (5.10)

with

v(p) =
( √

Ep + p

i
√

Ep − p

)
. (5.11)

The momentum space expansion of the Majorana field ψ = (
ψ1

ψ2

)
is

ψ(x) =
∫

dp

2π

1√
2Ep

(
apu(p) e−ipx + a†

pv(p) eipx
)
. (5.12)

The expressions for u(p) and v(p) imply that both components of ψ are Hermitian. To satisfy
the canonical anticommutation relations, one requires{

ap, a
†
p′

} = 2πδ(p − p′), (5.13)

{ap, ap′ } = {
a†

p, a
†
p′

} = 0. (5.14)

One also requires that the operators c, c† commute with a, a†.

3 (Ep, p) are the components of a covariant 2-vector pµ.
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Starting from formulae (4.6)–(4.9), with W(φ) = mφ, and performing a number of
integrations, one can obtain the momentum space expressions for H,P,Q1 and Q2. These
can be normal ordered without discarding infinite constants, because of the supersymmetry,
and one finds

H ± P =
∫

dp

2π
(Ep ± p)

(
c†pcp + a†

pap

)
, (5.15)

Q1 = i
∫

dp

2π

√
Ep + p

(−a†
pcp + c†pap

)
, (5.16)

Q2 =
∫

dp

2π

√
Ep − p

(
a†

pcp + c†pap

)
. (5.17)

The (Fock) vacuum |0〉 is annihilated by cp and ap for all p. It is therefore annihilated by
all the operators Q1,Q2,H and P, so it is supersymmetric and has zero energy and momentum.

Let us define bosonic and fermionic one-particle states by

|pb〉 = c†p|0〉, |pf〉 = a†
p|0〉. (5.18)

As a phase convention, we say these states have their centre of mass at the origin, and we
ignore the additional factors of

√
2Ep required for a relativistic normalization. There is just

one solution of the superevolution equations that can be constructed from these. �0 should
be bosonic, so, at (T ,X) = (0, 0), we set it equal to |pb〉. Then, by acting with Q1 and Q2,
as given by (5.16) and (5.17), we find that

�1 = −i
√

Ep + p|pf〉, �2 = √
Ep − p|pf〉, �12 = −im|pb〉. (5.19)

We must multiply all these component states by e−(EpT +pX) to obtain their values at (T ,X).
Superevolution implies that the only physical particle is a scalar boson, although its shadow
states �1 and �2 are fermionic.

Two-particle states can be constructed similarly. The obvious two-boson state is
�0 = c

†
pc

†
p′ |0〉, with energy E = Ep + Ep′ and momentum P ′ = p + p′. This generates

a solution of the superevolution equations with the shadow states

�1 = −i
√

Ep + pa†
pc

†
p′ |0〉 − i

√
Ep′ + p′a†

p′c
†
p|0〉, (5.20)

�2 = √
Ep − pa†

pc
†
p′ |0〉 +

√
Ep′ − p′a†

p′c
†
p|0〉, (5.21)

�12 = −i(
√

(Ep′ + p′)(Ep − p) − √
(Ep + p)(Ep′ − p′))a†

pa
†
p′ |0〉 − 2imc†pc

†
p′ |0〉. (5.22)

All these must be multiplied by e−(ET +P ′X). The coefficient of the first term in �12 simplifies
to i

√
2(EpEp′ − pp′ − m2), where the positive square root is taken if p > p′ and the negative

root if p < p′. A further simplification is possible by introducing a rapidity variable λ,
such that Ep = m cosh λ and p = m sinh λ, and similarly λ′. Then this coefficient becomes
2im sinh 1

2 (λ − λ′). Note that not only �0, but also all the shadow states are symmetric under
the interchange of p and p′.

There is a further candidate state for �0, namely �0 = a
†
pa

†
p′ |0〉, which is also in Hb, since

it is a two-fermion state. The shadow states associated with this are rather similar to those
given above. This state, and similar multi-particle states with an even number of fermions, are
the most problematic for our superevolution proposal. We were hoping for an interpretation
of supersymmetric field theory with only one type of particle. We have managed to exclude
the one-fermion state, but need to allow two-fermion states.

We have the following thoughts about this problem. First, note that the state a
†
pa

†
p′ |0〉

is not directly related to c
†
pc

†
p′ |0〉 by supersymmetry (although it occurs in combination with



6078 N S Manton

c
†
pc

†
p′ |0〉 in �12 above), and it is probably an accident of the free field theory that these two

states are degenerate in energy and momentum. In the interacting theory, the two-boson sector
and the two-fermion sector may be physically quite different, having different two-particle to
two-particle scattering amplitudes, and different bound states (if any). This would follow from
the different permutational symmetry. Both in the free and interacting theories, the two-boson
states are symmetric under particle interchange and the two-fermion states are antisymmetric.
As a shortcut to ensure that there is only one type of physical particle, we could perhaps
require that all multi-particle states are totally symmetric. This proposal is consistent with the
superevolution equations, because the action of Q1 and Q2 preserves the symmetry of states,
but whether it is consistent in the interacting theory requires further investigation.

6. Conclusion

We have revived the idea that the fundamental evolution equation in supersymmetric quantum
mechanics should be a ‘square root’ of the Schrödinger equation. This means treating the
supersymmetry charge as an evolution operator in a superspace, and we call the resulting
equations the superevolution equations. The supersymmetry algebra implies that if the
superevolution equations are satisfied then so is the Schrödinger equation. Usually, in
supersymmetric quantum mechanics, there are degenerate bosonic and fermionic states which
are physically distinct and linearly independent, but the superevolution equations relate them,
so the degeneracy disappears. One version of the superevolution takes place in a rather abstract
superspace, but in Witten’s model of supersymmetric quantum mechanics, the superevolution
equations can be presented using standard techniques from the theory of differential
forms.

We have extended the notion of superevolution to a simple supersymmetric field theory
in 1+1 dimensions. To make this work we needed to clarify the idea that the Schrödinger
equation in quantum field theory determines the evolution of states in both time and space
(via the Hamiltonian and total momentum operators). The superevolution equations use the
supercharges to define a consistent superspace evolution. Again, the superevolution equations
imply that the Schrödinger equation is satisfied, but the space of solutions is smaller, because
the superevolution relates states that are usually treated as physically independent. As a result,
there is a suppression of the degeneracy between bosonic and fermionic one-particle states. A
natural choice leads to a unique supersymmetric vacuum of zero energy and momentum, and
the only physical one-particle state being bosonic. Two-particle bosonic states also occur, as
desired, but it could be problematic to remove the two-fermion states. We suggested a way to
deal with these too, leading to a theory which retains its supersymmetric character, but which
has only bosonic physical particles.

One might ask, in this case, what the fermions are doing. They would contribute internal
lines to Feynman diagrams (the vertices are determined by the interaction term 2i dW(φ)

dφ
ψ1ψ2

of the Hamiltonian). The best interpretation might be that the supersymmetric theory defines
a special way of quantizing the purely bosonic field theory, leading to all the usual advantages
of supersymmetry (finiteness, zero vacuum energy), but without physical fermions. The
fermions are then rather like the ghosts that occur in gauge theories (but we prefer to call them
shadows).

It is of course important to explore extensions of the ideas here to higher dimensions and
to investigate whether it is possible to have a supersymmetric interpretation of a theory with
just fermions, or of a theory like QED, which has spin-1 photons and spin- 1

2 (non-Majorana)
electrons.
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